Proper d-Lucky Labeling of Rooted Products and Corona Products of Certain Graphs

نویسندگان

چکیده

Objectives: To examine rooted products graph and corona product of path with itself cycle for the existence d-lucky labeling. Methods: In this study, number Rooted to (Pn ◦ Pn) Corona (Pn⊙ are computed. Method construction is used throughout paper prove theorems. Findings: admit labeling numbers same obtained. Novelty: some graphs obtained by authors but new findings. Keywords: Proper Lucky labeling; product; d-lucky;

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Equitable Coloring of Corona Products of Graphs

In many applications in sequencing and scheduling it is desirable to have an underlaying graph as equitably colored as possible. In this paper, we consider an equitable coloring of some corona products H G of two graphs G and H. In particular, we show that deciding the colorability of H G is NP-complete even if G is 4-regular and H is . 2 K Next, we prove exact values or upper bounds on the equ...

متن کامل

Structure of Certain Banach Algebra Products

Let  and  be Banach algebras, ,  and . We define an -product on  which is a strongly splitting extension of  by . We show that these products form a large class of Banach algebras which contains all module extensions and triangular Banach algebras. Then we consider spectrum, Arens regularity, amenability and weak amenability of these products.

متن کامل

Equitable Colorings of l-Corona Products of Cubic Graphs

A graph G is equitably k-colorable if its vertices can be partitioned into k independent sets in such a way that the number of vertices in any two sets differ by at most one. The smallest integer k for which such a coloring exists is known as the equitable chromatic number of G and it is denoted by χ=(G). In this paper the problem of determinig the value of equitable chromatic number for multic...

متن کامل

Rooted Wreath Products

We introduce “rooted valuation products” and use them to construct universal Abelian lattice-ordered groups (with prescribed set of components) [CHH] from the more classical theory of [Ha]. The Wreath product construction of [H] and [HMc] generalised the Abelian (lattice-ordered) group ideas to a permutation group setting to respectively give universals for transitive (`-) permutation groups wi...

متن کامل

SOLVABILITY OF FREE PRODUCTS, CAYLEY GRAPHS AND COMPLEXES

In this paper, we verify the solvability of free product of finite cyclic groups with topological methods. We use Cayley graphs and Everitt methods to construct suitable 2-complexes corresponding to the presentations of groups and their commutator subgroups. In particular, using these methods, we prove that the commutator subgroup of $mathbb{Z}_{m}*mathbb{Z}_{n}$ is free of rank $(m-1)(n-1)$ fo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Indian journal of science and technology

سال: 2022

ISSN: ['0974-5645', '0974-6846']

DOI: https://doi.org/10.17485/ijst/v15i39.1154